Vortex Lattice Simulations of Attached and Separated Flows around Flapping Wings
نویسندگان
چکیده
Flapping flight is an increasingly popular area of research, with applications to micro-unmanned air vehicles and animal flight biomechanics. Fast, but accurate methods for predicting the aerodynamic loads acting on flapping wings are of interest for designing such aircraft and optimizing thrust production. In this work, the unsteady vortex lattice method is used in conjunction with three load estimation techniques in order to predict the aerodynamic lift and drag time histories produced by flapping rectangular wings. The load estimation approaches are the Katz, Joukowski and simplified Leishman–Beddoes techniques. The simulations’ predictions are compared to experimental measurements from wind tunnel tests of a flapping and pitching wing. Three types of kinematics are investigated, pitch-leading, pure flapping and pitch lagging. It is found that pitch-leading tests can be simulated quite accurately using either the Katz or Joukowski approaches as no measurable flow separation occurs. For the pure flapping tests, the Katz and Joukowski techniques are accurate as long as the static pitch angle is greater than zero. For zero or negative static pitch angles, these methods underestimate the amplitude of the drag. The Leishman–Beddoes approach yields better drag amplitudes, but can introduce a constant negative drag offset. Finally, for the pitch-lagging tests the Leishman–Beddoes technique is again more representative of the experimental results, as long as flow separation is not too extensive. Considering the complexity of the phenomena involved, in the vast majority of cases, the lift time history is predicted with reasonable accuracy. The drag (or thrust) time history is more challenging.
منابع مشابه
NUMERICAL ANALYSIS OF MAVs FLAPPING WINGS IN UNSTEADY CONDITIONS
Today, Flapping Micro Aerial Vehicles (MAV) are used in many different applications. Reynolds Number for this kind of aerial vehicle is about 104 ~ 105 which shows dominancy of inertial effects in comparison of viscous effects in flow field except adjacent of the solid boundaries. Due to periodic flapping stroke, fluid flow is unsteady. In addition, these creatures have some complexities in kin...
متن کاملPerformance Analysis of Flapping Wings in Formation Flights
In this paper, we investigate the aerodynamic aspects of formation flights. We do so by simulating the flow over flapping wings flying in grouping arrangement and in proximity of each others using the unsteady vortex lattice method. The results show that flying in V-shaped line formation at optimal spacing enables significant increase in the lift and thrust and savings in the power consumption....
متن کاملPower reduction and the radial limit of stall delay in revolving wings of different aspect ratio.
Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the w...
متن کاملThe aerodynamics of insect flight Sanjay
owe much of their extraordinary evolutionary success to flight. Compared with their flightless ancestors, flying insects are better equipped to evade predators, search food sources and colonize new habitats. Because their survival and evolution depend so crucially on flight performance, it is hardly surprising that the flight-related sensory, physiological, behavioral and biomechanical traits o...
متن کاملDual leading-edge vortices on flapping wings.
An experimental investigation was performed with two aims: (1) to clarify the existence of the dual leading-edge vortices (i.e. two vortices with the same sense of rotation located close to the leading edge above the leeward wing surface) observed on flapping wings in previous studies; (2) to study systematically the influences of kinematic and geometric parameters on such a vortical structure....
متن کامل